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Abstract

An important issue for the interpretation of data from deep-sea cores is the time for
tracers to be transported from the sea surface to the deep ocean. Global ocean cir-
culation models can help shed light on the timescales over which a tracer comes to
equilibrium in different regions of the ocean. In this note, we discuss how the most5

slowly decaying eigenmode of a model can be used to obtain a relevant timescale for
a tracer that enters through the sea surface to become well mixed in the ocean interior.
We show how this timescale depends critically on the choice between a Neumann sur-
face boundary condition in which the flux of tracer is prescribed or a Dirichlet surface
boundary condition in which the concentration is prescribed. Explicit calculations with10

a 3-box model and a three-dimensional ocean circulation model show that the Dirichlet
boundary condition when applied to only part of the surface ocean greatly overesti-
mate the time needed to reach equilibrium. As a result regional-“injection” calculations
which prescribe the surface concentration instead of the surface flux are not relevant
for interpreting the regional disequilibrium between the Atlantic and Pacific found in15

paleo-tracer records from deep-sea cores. For tracers such as δ18O that enter the
ocean from melt water, a Neumann boundary condition is more relevant. For tracers
that enter the ocean through air-sea gas exchange such as 14C, a prescribed concen-
tration boundary condition can be used to infer relevant timescales, but the Dirichlet
Boundary condition must be applied over the entire ocean surface and not only to a20

patch of limited area. Our three-dimensional model results based on a steady-state
modern circulation suggest that the relative disequilibrium between the deep Atlantic
and Pacific is on the order of “only” 1200 years or less and does not depend on the
size and location of the patch where the tracer is injected.
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1 Introduction

In a recent article Wunsch and Heimbach (2008) (hereinafter referred to as WH08)
pose an important question for the interpretation of paleoceanographic proxy tracer
data: “How long to oceanic tracer and proxy equilibrium?” One specific motivation for
posing the question is the large difference in the apparent time for the δ18O of deep At-5

lantic and Pacific oceans to reach equilibrium subsequent to the input of depleted δ18O
water from the melting of ice sheets noted by Skinner and Shackleton (2005). WH08
suggest that a transient tracer disequilibrium can more than account for the 3900 year
lag in the Pacific relative to the Atlantic recorded in the sediment. Indeed, simulated
transient tracer experiments performed by WH08 suggest that in the case where a10

tracer enters the ocean over a limited-area patch of the high latitude Northern Atlantic
or Southern Ocean, the deep Pacific can lag the deep Atlantic by as much as 4000–
6000 years before it reaches 90% of its equilibrium value. While we agree entirely with
the main point of the WH08 article – that a substantial passage of time is needed before
a tracer becomes uniformly mixed throughout the ocean after it enters through the sea15

surface, and that this transient response can result in significant regional differences in
the time to reach uniformity – we wish to bring attention to the importance of the choice
of boundary condition on the implied time to reach equilibrium.

The long equilibration timescale obtained by WH08 depends critically on their choice
of surface boundary condition. In their numerical simulations they prescribe the tracer20

concentration in a patch at the surface of the ocean. If instead of prescribing the
concentration of tracer they had prescribed the flux of tracer, the time to reach equi-
librium would have been drastically shorter. This is illustrated in Fig. 1 which shows
the time evolution of the concentration in the deep Atlantic ocean at (9◦ N, 19◦ W, depth
= 3195 m) of two tracers simulated using a three-dimensional ocean circulation model25

to be described in Sect. 3. One tracer, denoted by the dashed red curve, was intro-
duced using the same type of boundary condition used by WH08. Its concentration
was prescribed to be unity starting at t=0 over a 50 m thick patch in the high latitude
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North Atlantic Ocean. As t→∞ and all the ocean’s water parcels have cycled through
the surface patch, the concentration of this tracer approaches unity everywhere in the
ocean. The other tracer, denoted by the solid blue curve, was introduced by prescrib-
ing an instantaneous uniform flux at time t=0 into the same 50 m thick patch. For this
second tracer, the amount of tracer flux into the ocean was prescribed to be exactly5

the amount needed such that once the tracer is mixed uniformly throughout the ocean
its concentration is equal to unity everywhere. By construction, both tracers have the
same initial condition at time t=0 and the same equilibrium condition as t→∞. Their
approach to equilibrium is dramatically different however. After 25 000 years of simula-
tion the tracer with a prescribed concentration boundary condition has barely reached10

90% of its final equilibrium concentration but the tracer that is introduced using a pre-
scribed flux boundary condition is already in approximate equilibrium after only 1200
years.

The reason for the vastly different equilibration timescales is easy to understand
physically. For the case in which the concentration is prescribed, the tracer is intro-15

duced into the ocean only gradually because the flux of tracer through the surface
patch depends on the tracer gradient normal to the surface. As the tracer enters the
ocean its gradient near the surface, and hence its flux through the surface, decreases
rapidly because the tracer naturally spreads first to waters that are near the patch. Fur-
ther uptake of tracer depends on the rate at which pristine waters can cycle through the20

patch so as to maintain a concentration gradient normal to the patch. For the case in
which the flux of tracer is prescribed, all the tracer is introduced into the ocean instan-
taneously at time t=0 and the role of the circulation is then to mix the tracer throughout
the ocean. Equilibrium is reached when the tracer becomes uniformly mixed every-
where. In case the reader objects that in reality tracers enter the ocean more gradually,25

we demonstrate in Sect. 3.2.1 that the overshoot seen in Fig. 1 for the case in which the
flux is applied impulsively is greatly diminished if the flux is distributed over a thousand
years or more. However, an important point for the interpretation of paleo-proxy records
is that time lag for different points of the deep ocean to reach equilibrium when the flux
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is distributed in time is still controlled by the equilibration time of the impulsive response
and remains drastically shorter than for the prescribed concentration response.

The boundary condition used by WH08 can be thought of as labeling fluid elements
with a tracer as they circulate through the surface patch. The concentration, C, in-
creases monotonically from C=0 at time t=0 to C=1 as t→∞. The tracer concentra-5

tion, C(r, t), can therefore be interpreted as the fraction (by volume) of the water parcel
centered at r at time t that has circulated through the patch at least once since the
time t=0. The time t90(r) at which C=0.9 for the first time and used by WH08 as a
measure of tracer equilibration time corresponds to the time at which 90% of the fluid
elements at r have made contact with the surface patch since t=0. To the extent that10

the circulation can be thought of as being stationary, C(r, t), can also be interpreted
as a cumulative distribution function of times, t, since the fluid elements at r have last
circulated through the surface patch. Note that when the surface patch covers the en-
tire sea surface the distribution is sometimes called the age distribution (e.g. Primeau,
2005). With this interpretation, t90(r), is the 90th percentile of the distribution function15

of times since fluid elements at r have made last contact with the patch. As is evident
from Fig. 1, the time for an initially concentrated patch of tracer – such as would oc-
cur from a localized input of anomalous δ18O water from melting ice sheets – to mix
uniformly throughout the ocean is much shorter than the time needed for 90% of the
fluid elements to cycle through the input patch. Consequently, the t90 criterion used by20

WH08 greatly overestimates the time needed for a pulse of anomalous δ18O water to
reach equilibrium.

Our goal in the following sections is to further elucidate the dependence of the equili-
bration time on the choice of boundary condition. However, one of the main conclusions
from this article should already be evident – the relevant boundary condition for study-25

ing the differences in equilibration time between the Atlantic and Pacific ocean in the
δ18O record is not the one used by WH08 in which the concentration is prescribed,
but one in which the flux of tracer is prescribed. As we will discuss later, a prescribed
concentration boundary condition can be used to extract relevant timescales for trac-
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ers such as 14C that enter the ocean through air-sea exchange, but the prescribed
concentration boundary condition must be applied over the entire air-sea interface and
not as was done in WH08 over a patch of limited area with no-flux boundary conditions
applying over the rest of the ocean.

To avoid the arbitrariness of the 90% threshold associated with the t90 timescale, we5

will use the e-folding decay timescale of the most slowly decaying eigenmode of the
system. As t→∞, the most slowly decaying eigenmode dominates the time evolution
of the system because the other eigenmodes eventually decay sufficiently to make a
negligible contribution. The spatial pattern associated with the most slowly decaying
eigenmode together with the mode’s decay rate provide a concise description of the10

regional differences in the equilibration time. The plan for this paper is therefore to
compute the eigenmodes of a three-dimensional OGCM, and explore the dependence
of the characteristic equilibration time on the size of the patch in which the tracer is in-
troduced. Before presenting the results for the OGCM, we first illustrate in the simplest
possible terms the main difference for the equilibration time of a problem with a pre-15

scribed flux (Neumann boundary condition) and a prescribed concentration (Dirichlet
boundary condition) using a simple 3-box model. The available analytical solution for
the simple 3-box model will allow the interested reader to verify results which we obtain
numerically for the full OGCM.

2 A simple 3-box model example20

To illustrate in the simplest possible terms how the time to reach equilibrium depends
critically on the choice between a Dirichlet and Neumann boundary condition, we now
consider the evolution of a passive tracer in a simple 3-box model. A detailed formu-
lation of the governing equation for the 3-box model shown in Fig. 2 is presented in
Appendix A. Expressed in matrix form, the governing equation is

dc
dt

+ Ac = s, (1)
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where,

A =

 γ 0 −γ
0 γ −γ

−αεγ (α − 1)εγ εγ

 , (2)

is the model’s flux-divergence operator (also known as the transport operator), where
the state vector c=[c1 c2 c3]′ represents the tracer concentration in each box and
where s=[φa,1 0 0]′ is a source term. The prime denotes vector transpose. The
parameters in A that are not defined in the caption for Fig. 2 are the inverse timescale
γ≡vS/(V1+V2), and the small parameter ε≡(V1+V2)/V3.5

2.1 Neumann boundary condition

We first consider the case in which a pulse of tracer is injected instantaneously into box
“1” at time t=0 prior to which the tracer concentration was zero everywhere. The total
amount of tracer injected is such that as t→∞ and the mixing of the tracer is complete,
the equilibrium tracer distribution is one in which c1=c2=c3=1. The total amount of
tracer injected at time t=0 must therefore be V1+V2+V3, and the concentration in box 1
at time t=0+ is

c1(0+) =
V1 + V2 + V3

V1
=

1 + ε
αε

. (3)

For t>0 there is no source or sink of tracer into the ocean so that the total amount of
tracer is conserved. The time evolution of the tracer can then be obtained by propa-
gating the initial tracer distribution forward in time with the exponential of the matrix A
(e.g. Hirsch and Smale, 1974):

c = e−tAco, (4)

where co≡c(t=0+)=[(1+ε)/(αε),0,0]′ is the tracer distribution immediately after injec-
tion when all the tracer is concentrated in box “1”. Expanding the exponential in terms
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of the eigenmodes of A, we obtain the solutionc1(t)
c2(t)
c3(t)

 =

1
1
1

 +

 (1+ε)(1−α)
εα

−1+ε
ε

0

e−γt +
 1

ε
1
ε
−1

e−(1+ε)γt. (5)

The first mode corresponds to a zero eigenvalue and is therefore independent of t. It
captures the equilibrium state of the system which corresponds to a state in which the
pulse of tracer is mixed uniformly throughout the three boxes. The last two modes de-
cay exponentially with e-folding time-scales given by the reciprocal of the eigenvalues,

λ+ = −γ and λ− = −(1 + ε)γ. (6)

These two decaying modes describe the transient state of the system. The longest
lived of the two modes with an e-folding timescale 1/λ+ controls the length of time for
the system to come to equilibrium. The adjustment timescale for the Neumann problem
is therefore

τN = γ−1 =
V1 + V2

vS
. (7)

It is important to note that unlike the adjustment timescale τD obtained for the Dirichlet
problem to be considered in Sect. 2.2, τN is independent of the relative sizes of the two
surface boxes. As time progresses mixing and diffusion erases the details of the tracer
injection so that the size of the initial injection box becomes irrelevant.

2.2 Dirichlet boundary condition5

The box model analogue of the Dirichlet boundary condition considered by Wunsch
and Heimbach (2008) consists of holding the tracer concentration in box “1” to unity
starting at t=0. For t<0 the tracer concentration in each box is prescribed to be zero.
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Because c1 is prescribed, the differential equation corresponding to the first row of A
in Eq. (1) can be ignored and we are left with only the last two equations. The resulting
governing equation for the Dirichlet boundary condition reduces to

dci

dt
= Aiici + Ai1c1, (8)

where ci≡[c2(t), c3(t)]′, and

Ai1 =
[

0
αεγ

]
, Aii =

[
−γ γ

(1 − α)εγ −εγ

]
, c1 =

{
0, t ≤ 0,
1, 1t > 0.

(9)

The solution to this system can be written as the sum, ci=cf+ch, of a steady forced
solution

cf = −A−1
ii

Ai1 = [ 1 1 ]′ , (10)

and a transient homogeneous solution which can be written in terms of the exponential
of a matrix

ch = −e−tAiicf , (11)

Note that at time t=0, ch=−cf so that ci satisifies the zero initial condition.
Expanding the matrix exponential into the eigenmodes of Aii, the time evolution of

the tracer subject to the Dirichlet boundary condition can be expressed as follows[
c2(t)
c3(t)

]
=
[

1
1

]
+

[
−1−ε+d

2d ,
−1−(1−2α)ε+d

2d

]
eλ−t

+

[
1+ε+d

2d ,
1+(1−2α)ε+d

2d .

]
eλ+t

(12)
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where

λ± = −γ
2

[1 + ε ∓ d ] , with d =
√

(1 + ε)2 − 4αε. (13)

Both λ+ and λ− are real and negative so that the homogeneous solution decays to zero
and the equilibrium solution corresponds to the forced solution which is a state in which
the tracer concentration is uniform throughout the boxes. The approach to equilibrium
for the Dirichlet problem considered here is governed by the eigenmodes of the matrix
Aii. The time to reach equilibrium is given by the mode whose e-folding timescale is
longest, i.e.

τD ≡ 1
λ+

=
2γ−1

1 + ε −
√

(1 + ε)2 − 4αε

∼ γ−1

αε
, ε→ 0.

(14)

Note that τD depends on α, the relative size of the surface boxes. This is consistent with
the results of WH08 who also noted that the timescale to reach equilibrium increases
as the size of the surface patch where the tracer enters the ocean decreases.

2.3 Discussion of the simple box model results

If we form the ratio of τD to τN we obtain,

τD
τN

∼ 1
αε
, ε→ 0, (15)

which shows clearly that the timescale for the Dirichlet problem is much greater than5

the adjustment timescale for the corresponding Neumann problem.
480

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/5/471/2008/osd-5-471-2008-print.pdf
http://www.ocean-sci-discuss.net/5/471/2008/osd-5-471-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
5, 471–506, 2008

Tracer equilibrium

F. Primeau and
E. Deleersnijder

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The Dirichlet boundary condition implies a definite time-dependent “air-sea” flux
of tracer into box “1”. Indeed, a consideration of the total tracer budget yields
φa,1(t)=φ1,3=αvS

[
1−c3(t)

]
. From which we see that as c3(t) approaches its equi-

librium value the implied flux of tracer decreases to zero. We see also that the implied
flux is proportional to αS the area of the patch where the tracer is introduced. The5

smaller the area where the tracer is introduced into the ocean the more slowly the
tracer is fluxed into the ocean. The slow equilibration timescale for the Dirichlet in com-
parison to the Neumann problem can be understood in terms of the slow rate at which
the tracer is introduced into the ocean in the Dirichlet solution. This slow input rate
is not relevant for interpreting the δ18O record because the timing and amplitude of10

the melt water pulse is causally independent from the concentration of δ18O-depleted
water in the ocean. The melting of the ice prescribes a flux of δ18O-depleted water into
the ocean and does not depend on the circulation as is the case for the Dirichlet bound-
ary condition. The surface concentration of δ18O-depleted water on the other hand is
determined by the balance between the prescribed flux and the mixing of surface and15

interior waters. It is therefore the relatively fast timescale of the Neumann problem that
is the relevant one for interpreting the δ18O record.

An alternative way of thinking about the slow adjustment timescale of Dirichlet prob-
lem is to think of the solution to the Dirichlet problem as the concentration of surface
water (e.g. Deleersnijder et al., 2002), i.e. the concentration of water particles that have20

touched box-“1” at least once. The smaller we make α the less likely it is for a water
particle to have hit the box-“1” air-sea interface and thus have been transformed into a
“surface water particle”. The t90 timescale defined by WH08 as the time at which the
tracer concentration at some point r in the interior of the ocean equals 0.9 is precisely
the time at which 90% of the water in a parcel at r has been in contact with the patch25

where the tracer is introduced. The solution to the Neumann problem shows clearly
that a pulse of tracer becomes well mixed long before 90% of the water particles have
made contact with the patch where the tracer is injected.

While the box model is sufficient to demonstrate clearly how the Dirichlet versus
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Neumann boundary conditions lead to highly different adjustment timescales, to get
quantitative results relevant to the real ocean and to look at the relative disequilibrium
between the Atlantic and Pacific Oceans, we now turn to a three-dimensional ocean
circulation model.

3 Eigenmode analysis for a 3-D ocean tracer transport model5

In order to compare the eigenmodes of a three-dimensional global ocean circulation
model with a Neumann boundary condition (prescribed flux) to a model with a Dirich-
let boundary condition (prescribed concentration), we use the three-dimensional tracer
transport model of Primeau (2005). The advantage of this model is that its advection-
diffusion tracer transport operator is available in matrix form making it possible to com-10

pute the model’s three-dimensional eigenmodes by solving a matrix eigenvalue prob-
lem.

The tracer transport model is driven by the velocity field and eddy diffusion tensor
field derived from a dynamical ocean general circulation model (OGCM). The dynami-
cal OCGM is a version of the climate model of the Canadian Center for Climate Mod-15

eling and Analysis, based on the NCAR CSM Ocean Model (Pacanowski et al., 1993;
NCAR CSM Ocean Model Technical Note, NCAR/TN-423+STR, NCAR Oceanography
Section, 1996). The dynamical model uses the KPP (Large et al., 1994) vertical mix-
ing scheme and the GM (Gent and McWilliams, 1990) isopycnal eddy-mixing scheme.
Second-order centered differences are used on a ∼3.75◦×3.75◦ grid with 29 levels20

ranging in thickness from 50 m near the surface to 300 m near the bottom. The model
has a velocity field and transport characteristics typical of similar resolution OGCM’s
and produces a maximum Atlantic meridional overturning streamfunction of 18 Sv. It
has been used extensively to simulate transient and equilibrium tracers including 14C
and CFC’s (Krakauer et al., 2006) and PO4, Carbon and Alkalinity (Kwon and Primeau,25

2006; Kwon and Primeau, 2008). The water mass ventilation properties of the annu-
ally averaged circulation are described in detail in Primeau (2005), Primeau and Holzer
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(2006), Holzer and Primeau (2006, 2008).
The tracer transport model uses a state vector c of dimension 63 090×1 whose

elements correspond to the tracer concentration in each ocean grid box to repre-
sent a three-dimensional tracer concentration field. The discretized version of the
advection-diffusion flux-divergence operator, ∇·[u−K·∇], subject to no-flux conditions5

on all boundaries is then represented by a 63 090×63 090 sparse matrix which we
denote by A.

3.1 Dirichlet boundary condition: prescribed tracer concentration

We present the problem formulation in discrete form. The interested reader is referred
to Appendix B for the continuous formulation of the eigenmode problem. For the Dirich-
let boundary condition the tracer concentration is prescribed in the patch so that only
the equations for the grid points outside the patch need to be solved for. The in-patch
points for which the concentration is prescribed to be unity appear on the right hand
side as a forcing term to a reduced system of equations for the out-of-patch grid boxes,

dci

dt
+ Aiici = −Ais1s,

ci = 0, at t = 0,
(16)

in which 1s is a vector of ones of length Ns, the number of grid points inside the patch.
In writing Eq. (16), we used the partitioning of the state vector and matrix transport
operator into

c =
[
cs

ci

]
, and A =

[
Ass Asi

Ais Aii

]
, (17)

in which s indicates the set of indices corresponding to model grid boxes inside the
surface patch and i indicates the set of indices corresponds to grid boxes outside the10

patch.
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The eigenmode problem for the discretized model with Dirichlet boundary condition
consists of looking for solutions of the form ci(t)=ve

−λt. Substituting this modal form
into the homogeneous counterpart of Eq. (16) leads to the following matrix eigenvector
problem,

Aiiv n = λnv n, for n = 0, · · · , Ni, (18)

where Ni is the number of grid boxes outside the patch. In the following we will as-
sume that the eigenmodes are ordered in terms of their real part <{λn}≡τ

−1
n such that

τ0>τ1≥τ2≥ · · · ≥τN .
Note that by eliminating the rows and columns corresponding to grid points inside

the patch we have made the matrix in Eq. (18) depend on the location and size of the5

patch. This should be contrasted with the Neumann eigenmode problem. As we will
see in Sect. 3.2, (Eq. 23) the eigenmode problem for the Neumann problem uses the
full matrix and is therefore completely independent of the patch size and location. The
e-folding decay rate of the most slowly decaying eigenmode for the Dirichlet problem
will therefore depend on the size and location of the patch. This is consistent with the10

results of WH08 who found that the t90 timescale tended to increase as the patch size
was made smaller.

3.1.1 Approach to equilibrium for the Dirichlet problem

The solution of Eq. (16) can be expressed as the sum of a forced and a homogeneous
solution. The forced solution describes the equilibrium state of the system and the
homogeneous solution describe the transient approach to equilibrium. If we expand
the homogeneous solution in terms of the system’s eigenmodes, the full solution can
be written as follows

ci(t) = 1i + b0v 0e
−t/τ0 +

Ni∑
n=1

bnv ne
(−1/τn+iωn)t, (19)
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where the leading 1i corresponds to the forced response due to the prescribed concen-

tration of unity in the patch. We have separated out the leading eigenfunction, v 0e
−t/τ0 ,

because it’s eigenvalue is purely real. To see why this is so, note that in the limit of
t→∞ the time evolution of any tracer distribution that has an initial projection on v 0 will
eventually become dominated by v 0 because all the other eigenmodes decay to zero5

more quickly. In this asymptotic regime, the tracer concentration would change sign at
certain values of t if ω0 6=0. Because such changes of sign are a physical impossibility,
ω0 must necessarily vanish. We can also conclude from this argument that the leading
eigenvector, v 0 is necessarily sign definite otherwise an initially positive tracer distri-
bution would ultimately produce negative tracer concentrations once the other eigen-10

modes had decayed away. Furthermore, any positive tracer distribution must have a
projection onto v 0 because in a connected domain with finite diffusivity all the other
eigenmodes, v n for n=1,2, · · ·∞ cannot be sign definite, that is they must have both
positive and negative regions. This fact follows from the bi-orthogonality property of of
the eigenvectors of A and its adjoint which are both proper advection-diffusion tracer15

transport operators. The fact that any positive tracer distribution must have a projection

onto v 0 for the Dirichlet problem means that v 0e
−t/τ0 is always the relevant eigenmode

for describing the asymptotic approach to equilibrium of the Dirichlet problem.
Because the type of boundary condition that is used inside the patch (prescribed

concentration) is different from the type of boundary condition that is used outside the20

patch (no flux) there is no single eigenspectrum relevant to each Dirichlet problem cor-
responding to a different patch size and location. A separate eigenvalue problem must
be solved every time the surface patch is changed. We note also that because differ-
ent types of boundary conditions are used inside and outside the patch the principle of
superposition does not apply if one wants to add up the concentrations from different25

patches. This points again to the fact that the regional-“injection” runs of WHO8 cannot
be used in a simple way to interpret real tracers for which we expect to be able to add
the contribution from different patches to obtain the total tracer concentration.

To explore the dependence of the e-folding decay timescale of the most slowly de-
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caying mode on the location and areal extent of the patch where the tracer concen-
tration is prescribed, we randomly chose 20 points at the surface of the ocean and for
each point we constructed a set of 6 patches ranging in area from that of a single grid
box to that of the full ocean surface. In this way a total of 101 distinct surface patches
were constructed. For each of these patches we constructed a matrix Aii by deleting5

the rows and columns of A corresponding to grid points inside the patch. We then
solved the matrix eigenvalue problem in Eq. (18) for each of the 101 Aii matrices using
the sparse matrix eigenvalue solver Arpack (Lehoucq and Sorensen, 1996) as imple-
mented in Matlab’s “eigs” function. For each case we recorded the e-folding decay
timescales, τ0=1/λ0 and τ1=1/<{λ1}, of the two most slowly decaying eigenmodes.10

Figure 3 shows a scatter plot of τ0 and τ1 as a function of the reciprocal of the area
A of the surface patch. The figure shows clearly how the equilibration timescale for
the Dirichlet problem increases without bound as A approaches zero. There is also
a conspicuous scattering of τ0 for small area patches indicating a large sensitivity to
the precise location of the patch. This sensitivity is expected due to local differences15

in the vertical velocity, diffusive mixing and penetration depth of the mixed layer. In
contrast, the timescale τ1 associated with the decay rate of the second most slowly
decaying eigenmode shows very little scatter. This behavior of τ0 and τ1 is consistent
with the fact that as A→0 the eigenspectrum of the Dirichlet problem approaches the
one for the Neumann problem. In other words, as A→0 the number of grid boxes20

inside the patch decreases until Aii→A and 1/τ0→0 as is required for the Neumann
problem where the no-flux boundary condition ensures that the total amount of tracer
is conserved.

3.2 Neumann boundary condition: prescribed flux

We again present the problem formulation in discrete form. The interested reader
can refer to Appendix C for the continuous formulation of the eigenvalue problem with
Neumann boundary conditions. The tracer transport problem in which a flux of tracer
is prescribed through a given surface patch at time t=0 can be written in terms of a
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matrix system of differential equations of the form

d
dt

c + Ac = ρsδ(t), (20)

subject to the initial condition

c = 0, at t = 0, (21)

where s is a vector with ones in the elements corresponding to grid boxes inside the
patch and zeros in the elements corresponding to grid boxes outside the patch and
where δ(t) is the Dirac-delta function. The dimensionless scalar ρ ensures that enough
tracer is injected in the patch at time t=0 so that the asymptotic equilibrium tracer
concentration is equal to unity everywhere. The parameter ρ is therefore equal the
ratio of the total volume of the ocean to the volume inside the patch. Equation (20)
can be reduced to a homogeneous initial value problem (i.e. with no source term on
the right hand side) by integrating the equation from t=−ε to t=ε and letting ε→0, to
obtain

d
dt

c + Ac = 0,

c(t = 0) = ρs,
(22)

in which the effect of the pulse of tracer injected into the ocean at time t=0 is encoded
in the problem’s initial condition.

The eigenmode problem for the discretized model with Neumann boundary condition
consists of looking for solutions of the homogeneous equation that are of the form
c(t)=ve−λt. Substituting the modal form into the homogeneous equation leads to the
following matrix eigenvector problem,

Av n = λnv n, for n = 0, · · · , N − 1, (23)
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where N=63 090 is the number of grid boxes in the model. The eigenvectors, v n,
capture the spatial pattern of the eigenmodes and the eigenvalues, λn are such that
the reciprocal of their real parts give the e-folding decay rate of the corresponding
eigenmodes. In the following we will assume that the eigenmodes are ordered in terms
of their real part <{λn}≡τ

−1
n such that τ0>τ1≥τ2≥ · · · ≥τN .5

3.2.1 Approach to equilibrium for the Neumann problem

The solution to Eq. (20) is obtained by projecting the initial condition, c=ρs onto the
eigenmodes of A,

c(t) = eAt(ρs) =
N−1∑
n=0

anv ne
−λnt

= 1 +
N−1∑
n=1

anv ne
(−1/τn−iωn)t,

(24)

where N is again the total number of grid boxes and hence eigenmodes, and where
the leading vector of ones in the second line corresponds to the constant eigenfunc-
tion with the zero eigenvalue. All the eigenmodes with n≥1 have a positive τn and
therefore decay exponentially with time. As t→∞ only the constant eigenmode with10

a zero eigenvalue survives to produce the asymptotic equilibrium state. In general,
the approach to the asymptotic tracer field as t→∞ is dominated by v 1, because the
other eigenmodes decay more quickly. In the unlikely situation where the initial tracer
distribution does not project onto v 1, the asymptotic tracer field will be dominated by
v 2e

−λ2t, the second most slowly decaying eigenmode and the approach to equilibrium15

will be even faster.
To compute the slowly decaying part of the eigen-spectrum of A we used Arpack

(Lehoucq and Sorensen, 1996) as implemented in Matlab’s “eigs” function. As required
by tracer conservation, A has a constant eigenvector with a zero eigenvalue, λ0=0. The
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most slowly decaying eigenmode for our model has eigenvalue, λ1≡1/τ1−iω1, which
corresponds to an over damped mode with an e-folding decay time of τ1=629 years
and a period of Tn=2π/ω1=5190 years. The next most slowly decaying eigenmode
has an e-folding decay timescale of τ2=365 years. Figure 4 shows a contour plot of
the phase and amplitude of the corresponding eigenfunction, v 1 in the deep ocean.5

For our OGCM, the approach to the uniform tracer distribution is governed by the
over-damped eigenmode v 1e

−λ1t. The timescale for the approach to this exponen-
tially decaying regime is in turn determined by the relative decay rate of the next most
slowly decaying eigenmode, through the formula τr∼τ1τ2/(τ1−τ2), which for our model
is τr=870 years.10

Assuming that the initial projection on v 1 is not zero, as is the case for our model, the
relative disequilibrium between points at two different locations in the deep ocean, in
grid boxes i and j say, can be obtained for times t�τr from the spatial structure of v 1
alone. If we consider two points in the ocean at grid boxes i and j then the asymptotic
disequilibrium of these two points is

||1 − ci (t)|| ∼ ||a1v1i ||e−t/τ1 ,

||1 − cj (t)|| ∼ ||a1v1j ||e−t/τ1 ,
(25)

where v1i and v1j are the i th and j th elements of v 1. The time lag ∆t(i , j ) between the
equilibration time of boxes with indices i and j can be estimated from the requirement
that

||v1i ||e
− t
τ1 = ||v1j ||e

− t+∆t(i ,j )
τ1 , (26)

which leads to the following formula,

∆t(i , j ) ≈ −τ1 log

(
||v1i ||
||v1j ||

)
, (27)
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provided neither v1i or v1j vanishes. At the few points where either v1i or v1j vanishes,
the next eigenmode in the expansion (which decays even more rapidly) would need to
be taken into account. For our model, the lag in the equilibration time between any
two points at depths below 3100 m is always less than 1200 years and much less on
average. These time lags are much smaller than those obtained from the boundary5

condition use by WH08, i.e. Dirichlet boundary condition on regional patches.
Figure 5 contrasts the time evolving response at two points in deep ocean to a Dirac-

delta function pulse of tracer in the surface ocean. One point is in the Atlantic and
the other point is in the Pacific. The tracer concentration crosses its equilibrium value
before 2000 years at both sites and is pretty much in equilibrium at about 3000 years.10

The Pacific lag with respect to the Atlantic is generally less than 1000 years. Figure 6
shows the response at the same two points for the case where the injection of tracer
is distributed in time according to a Gaussian pulse with a standard deviation of 2000
years. Distributing the tracer flux in time as opposed to injecting it instantaneously
using a Dirac-delta function has the effect of reducing the overshoot past the asymptotic15

equilibrium value and tends to further decrease the lag between the Pacific and Atlantic
responses.

4 Discussion

Tracer simulations that use a prescribed tracer concentration as a surface boundary
condition allow the tracer flux to be determined as part of the solution. This has the20

effect of making the flux dependent on the tracer concentration and on the ocean cir-
culation. However, for a tracer such as δ18O, the flux of melt water into the ocean
determines the initial surface concentration of δ18O and not the other way around.

The injection of a tracer by a process such as ice melt is consistent with prescribing
a flux over a limited region of the surface ocean. Prescribing the concentration as is25

done by WH08, implies that there is some instantaneous feedback mechanism that
keeps the surface δ18O concentration at some prescribed value as deeper waters with
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little or no tracer signature are mixed into the surface layer. It is difficult to imagine a
mechanism that could achieve this. We expect no such feedback from the runoff of
ice-melt from rivers and streams and while the atmosphere is a reservoir with a fast
mixing timescale it is a rather small reservoir and is therefore not expected to have
enough inertia to keep the δ18O content of surface waters constant during the period5

over which the ocean reaches equilibrium.
For a tracer such as 14C that enters the ocean through air-sea gas exchange a restor-

ing boundary condition is appropriate. To the extent that the air-sea gas exchange is
sufficiently rapid, one might argue that a prescribed concentration boundary condition
can be used to provide timescales useful for the interpretation of regional differences10

in tracer concentrations. However, for the specific case of 14C the air-sea disequilib-
rium is sufficiently large that it needs to be taken into account (Campin et al., 1999), in
which case a flux boundary condition applied directly to a well mixed atmospheric box
coupled to the ocean would be easier to interpret.

While the Neumann boundary condition in which the flux of tracer is prescribed is
the relevant one for understanding the equilibration time of a tracer such as δ18O, the
Dirichlet boundary condition in which the concentration is specified is still extremely
useful for understanding the concept age in marine modeling (e.g. Delhez et al., 1999;
Holzer and Hall, 2000; Deleersnijder et al., 2002; Haine and Hall, 2002). As mentioned
in the introduction, for the case of a stationary circulation the solution to the Dirichlet
boundary condition can be interpreted as the cumulative distribution of times since the
fluid elements in the ocean interior were last in contact with the surface patch. The time
derivative of the cumulative distribution is often referred to as an age distribution and it
gives important information about the distribution of times by which fluid elements are
transported from the surface ocean to a point in the interior of the ocean via multiple
pathways. However, in order for the age distribution to give specific information about
the relative disequilibrium of a given tracer in the interior of the ocean it must be con-
volved with the time history of the surface concentration of the given tracer. Unless the
concentration history of the tracer at the surface is known, the age distribution cannot
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be used to infer the relative disequilibrium of the tracer. This point is made explicit from
the integral equation relating the Green function, G(r, t;Ω) for propagating a pulse of
tracer through a surface patch Ω at time t=0 and the Green function G(r, t; r′, t′) for
propagating a prescribed surface concentration at time t′ at point r′ inside Ω,

G(r, t;Ω) =
∫ t
0
dt′
∫
Ω
d2r′G(r, t; r′, t′)G(r′, t′;Ω). (28)

(The formulation of the governing equations that define G and G can be found in Holzer
and Hall, 2000). Equation (28) shows how an initial pulse of flux through Ω at time t=0
is propagated using G(r′, t′;Ω) from Ω back to a point r′ on Ω at some time t′≥0 and
then from r′ to a point r in the interior at time t using G(r, t; r′, t′). The appearance of
G(r′, t′;Ω) on the right hand side of Eq. (28) shows that detailed information about the5

time evolution of the tracer concentration within Ω is needed to obtain the interior tracer
disequilibrium at time t. This information is not contained in G, the Green function for
the Dirichlet problem.

Holzer and Hall (2000) point out that the mean time since last contact with a patch
Ω, ΓΩ=

∫∞
0 τG(r, τ;Ω)dτ, tends to infinity as the size of Ω shrinks to zero. In other10

words, as Ω shrinks to zero it takes infinitely long on average for fluid elements to
find their way from Ω to r. It may therefore seem paradoxical that a tracer that is
initially concentrated in a small patch Ω can become well mixed in a finite time even
as Ω shrinks to zero. There is no paradox, however. It is the short τ part of the G
distributions that carries the bulk of the tracer because as the area of the patch shrinks15

to zero, the initial concentration tends to infinity. In the case of the δ18O tracer for
example, the concentration of δ18O depleted water is expected to have been extremely
elevated at the mouth of the melt water rivers and streams relative to the well mixed
asymptotic state. Therefore, when Ω is small, it is the fast transport of waters with
initially concentrated tracer values that carry the bulk of the δ18O signal and so bring20

the ocean to its well mixed state long before t90 or ΓΩ is reached.
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5 Conclusions

In this article we have used the eigenmodes of a simple three box model and of a three-
dimensional ocean circulation model to characterise the timescale for a tracer to come
to equilibrium. We have shown that the timescale to reach equilibrium is longer when
one prescribes the concentration of tracer instead of the flux of tracer. The difference5

in equilibration time is especially pronounced when the patch over which the tracer
is injected is small. For the Dirichlet problem the time to reach equilibrium tends to
infinity as the area of the patch shrinks to zero. In contrast, the equilibration time of the
Neumann problem becomes insensitive to the details of the injection as the patch size
shrinks to zero. This result should not be surprising to anyone who has observed the10

dispersion of a dye in fluid experiment – the details of the size of the syringe used to
inject the dye quickly become irrelevant to the evolution of the dye.

Prescribing the surface concentration to be a constant implies that the flux of tracer
into the ocean depends on the concentration of this tracer in surface water. Such a
boundary condition can be used for interpreting the time to uniformity of a tracer that15

enters the ocean through air-sea gas exchange, provided that the air-sea exchange
rate is sufficiently rapid and that the Dirichlet boundary condition is applied to the entire
ocean surface. Applying the Dirichlet boundary condition in patches of limited surface
area breaks the superposition principle and makes it difficult to apply the resulting time
scales for the interpretation of real tracers.20

For the case of δ18O, the melting of ice sheets is causally independent of the con-
centration of δ18O in surface waters and the correct boundary condition for interpreting
the relative disequilibrium between the deep Atlantic and Pacific oceans found in the
δ18O record is the Neumann boundary condition for which the flux is prescribed. Our
three-dimensional model results suggest that the relative disequilibrium between the25

modern day deep Atlantic and Pacific oceans is on the order of 1200 years or less.
Of course, a realistic simulation of the dispersion of the δ18O signal from the melting
of the ice sheets needs to take into account the changes in ocean currents that are
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expected to occur as a result of the change in density due to the fresh-water pulse.
Without taking these effects into account we can still question the “simpler explanation”
offered by WH08 that a steady modern-day circulation is sufficient to account for the
apparent 3900 year lag between the times for the deep Pacific and Atlantic oceans to
reach equilibrium.5

Appendix A

Formulation of the governing equations for the 3-box model

The volumes of the boxes are denoted by V1, V2 and V3, and the corresponding tracer
concentrations are denoted by c≡[c1 c2 c3]′. As indicated in Fig. 2, the index “3” is
associated with the deep ocean box, while the indices “1” and “2” are associated with
the two surface ocean boxes. The geometry of the boxes, as shown in Fig. 2a, is such
that S denotes the area of the interface separating the deep box from the surface boxes
as well as the area of the ocean-atmosphere interface. The limited area of the interface
separating boxes 1 and 3 is then αS with 0≤α≤1, and the area of the interface between
boxes 2 and 3 is (1−α)S. To keep the algebraic complexity to a minimum it is useful to
consider the case where the thickness of the surface boxes is much less than that of
the deep box. We therefore introduce the following small parameter

ε =
V1 + V2

V3
� 1. (A1)

The net flux of tracer from box i to box j is denoted by φi ,j as indicated in Fig. 2b, and
the net flux of tracer from the atmosphere into surface box “1” is denoted by φa,1. The
flux of tracer from the atmosphere to box “2” is assumed to be zero. For simplicity and
since ε is assumed small we will neglect the tracer exchange between the two surface
boxes, more precisely, we set φ1,2=0. We parameterize the fluxes between the ocean
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boxes as the product of (i) the area between the boxes, (ii) a constant velocity scale v
and (iii) the difference in tracer concentration between the boxes:

φ1,3 = (c1 − c3)αvS, φ2,3 = (c2 − c3)(1 − α)vS. (A2)

The tracer budget for each of the three boxes yields the following governing equa-
tions

V1
dc1

dt
= −φ1,3,+φa,1

V2
dc2

dt
= −φ2,3,

V3
dc3

dt
= φ1,3 +φ2,3.

(A3)

Combining the flux relations in Eq. (A2) with the differential equations in Eq. (A3) we
obtain

dc1

dt
= −γc1 + γc3 +

φa,1
V1

,

dc2

dt
= −γc2 + γc3,

dc3

dt
= αεγc1 + (1 − α)εγc2 − εγc3,

(A4)

where we have introduced the time-scale

γ−1 =
V1 + V2

vS
. (A5)

It is convenient to rewrite this system of equations in matrix form

dc
dt

+ Ac = s, (A6)
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where

c =

c1
c2
c3

 , s =

φa,1/V1
0
0

 , and A =

 γ 0 −γ
0 γ −γ

−αεγ (α − 1)εγ εγ

 . (A7)

Appendix B

Continuous eigenmode problem for the case of a Dirichlet
boundary condition

The mathematical formulation of the tracer initial value problem with concentration pre-
scribed over a fixed patch (i.e. the problem considered by WH08) is given by

∂
∂t
C(t, r) = −∇ · [u − K · ∇]C(t, r),

C(0, r) = 0,
(B1)

subject to the boundary conditions

n̂ · (K · ∇C(t, r)) = 0 for r on the boundary Γ1\Γ0,

C(t, r) =

{
0, for t ≤ 0

1, for t > 0
on r ∈ Γ0,

(B2)

where

n̂ : is a unit vector normal to the basin boundary,

Γ : is the bottom and sides of the ocean basin,

Γ0 : is a surface patch at the air-sea interface,

Γ1 : is the total air-sea interface,

Γ1\Γ0 : is the rest of the air-sea interface excluding the Γ0 patch.

(B3)
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The eigenfunctions, ψn(r), of the Dirichlet problem are the solutions to the following
eigenvalue problem

(−1/τn + iωn)ψn(r) = −∇ · [u − K · ∇]ψn(r),

ψn(r) = 0 for r on the boundary Γ0,

n̂ · (K · ∇ψn(r)) = 0 for r on the boundary Γ1\Γ0,

(B4)

where the eigenmodes are ordered such that their decay rate increases with increasing
n. Note that because of the absorbing boundary condition over Γ0 and the absence of
any tracer source terms, the eigenmodes, eλntψn(r), n=1,2, · · · ,∞, must be decaying
functions of time, implying that τn>0 for all n.

Appendix C5

Continuous eigenmode problem for the case of a Neumann
boundary condition

∂
∂t
C(t, r) = −∇ · [u − K · ∇]C(t, r),

n̂ · (K · ∇C(t, r)) =


V

AΓ0

δ(t) for r on the boundary Γ0

0 for r on the boundary Γ ∪ Γ1\Γ0

(C1)
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where

n̂ : is a unit vector normal to the boundary of the domain,

Γ : is the basin boundary,

Γ1 : is the total air-sea interface,

Γ0 : is a surface patch on the air-sea interface,

Γ ∪ Γ1\Γ0 : is the rest of the air-sea interface excluding the Γ0 patch,

δ(t) : is the Dirac-delta function,

V : is the total volume of the ocean,

AΓ0
: is the area of the Γ0 patch.

(C2)

The eigenfunctions, ψn(r), of the Neumann problem are the solutions of the following
eigenvalue problem{

(−1/τn + iωn)ψn(r) = −∇ · [u − K · ∇]ψn(r),

n̂ · (K · ∇ψn(r)) = 0 for r on the boundary Γ,
(C3)

where the eigenvalues, λn=(−1/τn+iωn), n=0,1, · · · ,∞, are ordered such that the e-
folding decay timescale, τn, decreases with increasing n. As already mentioned in
Sect. 2.1, the zero eigenvalue is a manifestation of the conservation of tracer. That the
eigenfunction corresponding to the zero eigenvalue is constant is consistent with the
physical fact that in the absence of source or sinks, a uniform tracer distribution must5

be in steady state. Also, because diffusion acts to decrease the difference between the
domain maximum and minimum tracer concentrations, all the eigenmodes except for
the one with the zero eigenvalue must be decaying modes, (i.e. τn>0). Conservation
of tracer mass then requires that all eigenfunctions with n≥1 integrate to zero. This
last fact implies that any initial tracer distribution that does not integrate to zero must10

necessarily project onto ψ0.
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2 PRIMEAU, DELEERSNIJDER: TRACER EQUILIBRIUM
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Fig. 1. Time evolution of two tracers at the same location indicated
by the red star in the inset map (9◦N, 19◦W, depth = 3195 m) in
the deep Northern Atlantic showing the very different equilibration
time for a Dirichlet (prescribed concentration) versus a Neumann
(prescribed flux) boundary condition. The solid curve corresponds
to the Neumann boundary condition in which a pulse of tracer is
injected at timet = 0. The injection is uniformly distributed in a 50
m thick patch with an area 1.4×107 km2 located in the high latitude
Northern Atlantic as indicated by black region in the inset map.
The dashed curve corresponds to the Dirichlet boundary condition
in which the tracer concentration is prescribed to unity fort > 0 in
the same 50 m thick patch used for the Neumann problem. At time
t = 0 the concentration of both tracers is zero everywhere in the
ocean.

to be described in Sec. 3. One tracer, denoted by the dashed
red curve, was introduced using the same type of boundary
condition used by WH08. Its concentration was prescribed to
be unity starting att = 0 over a 50 m thick patch in the high
latitude North Atlantic Ocean. Ast→ ∞ and all the ocean’s
water parcels have cycled through the surface patch, the con-
centration of this tracer approaches unity everywhere in the
ocean. The other tracer, denoted by the solid blue curve, was
introduced by prescribing an instantaneous uniform flux at
time t = 0 into the same 50 m thick patch. For this sec-
ond tracer, the amount of tracer flux into the ocean was pre-
scribed to be exactly the amount needed such that once the
tracer is mixed uniformly throughout the ocean its concen-
tration is equal to unity everywhere. By construction, both
tracers have the same initial condition at timet = 0 and the
same equilibrium condition ast → ∞. Their approach to
equilibrium is dramatically different however. After25 000
years of simulation the tracer with a prescribed concentration
boundary condition has barely reached 90% of its final equi-
librium concentration but the tracer that is introduced using a
prescribed flux boundary condition is already in approximate
equilibrium after only1200 years.

The reason for the vastly different equilibration timescales
is easy to understand physically. For the case in which the
concentration is prescribed, the tracer is introduced intothe
ocean only gradually because the flux of tracer through the
surface patch depends on the tracergradientnormal to the
surface. As the tracer enters the ocean its gradient near the
surface, and hence its flux through the surface, decreases
rapidly because the tracer naturally spreads first to waters
that are near the patch. Further uptake of tracer depends
on the rate at which pristine waters can cycle through the
patch so as to maintain a concentration gradient normal to the
patch. For the case in which the flux of tracer is prescribed,
all the tracer is introduced into the ocean instantaneouslyat
time t = 0 and the role of the circulation is then to mix the
tracer throughout the ocean. Equilibrium is reached when
the tracer becomes uniformly mixed everywhere. In case
the reader objects that in reality tracers enter the ocean more
gradually, we demonstrate in Section 3.2.1 that the overshoot
seen in Fig. 1 for the case in which the flux is applied im-
pulsively is greatly diminished if the flux is distributed over a
thousand years or more. However, an important point for the
interpretation of paleo-proxy records is that time lag for dif-
ferent points of the deep ocean to reach equilibrium when the
flux is distributed in time is still controlled by the equilibra-
tion time of the impulsive response and remains drastically
shorter than for the prescribed concentration response.

The boundary condition used by WH08 can be thought
of as labeling fluid elements with a tracer as they circulate
through the surface patch. The concentration,C, increases
monotonically fromC = 0 at time t = 0 to C = 1 as
t → ∞. The tracer concentration,C(r, t), can therefore be
interpreted as the fraction (by volume) of the water parcel
centered atr at timet that has circulated through the patch
at least once since the timet = 0. The timet90(r) at which
C = 0.9 for the first time and used by WH08 as a measure
of tracer equilibration time corresponds to the time at which
90% of the fluid elements atr have made contact with the
surface patch sincet = 0. To the extent that the circula-
tion can be thought of as being stationary,C(r, t), can also
be interpreted as a cumulative distribution function of times,
t, since the fluid elements atr have last circulated through
the surface patch. Note that when the surface patch covers
the entire sea surface the distribution is sometimes calledthe
age distribution (e.g. Primeau, 2005). With this interpreta-
tion, t90(r), is the 90-th percentile of the distribution func-
tion of times since fluid elements atr have made last contact
with the patch. As is evident from Fig. 1, the time for an
initially concentrated patch of tracer – such as would occur
from a localized input of anomalousδ18O water from melt-
ing ice sheets – to mix uniformly throughout the ocean is
much shorter than the time needed for 90% of the fluid el-
ements to cycle through the input patch. Consequently, the
t90 criterion used by WH08 greatly overestimates the time
needed for a pulse of anomalousδ18O water to reach equi-
librium.

Fig. 1. Time evolution of two tracers at the same location indicated by the red star in the inset
map (9◦ N, 19◦ W, depth = 3195 m) in the deep Northern Atlantic showing the very different
equilibration time for a Dirichlet (prescribed concentration) versus a Neumann (prescribed flux)
boundary condition. The solid curve corresponds to the Neumann boundary condition in which
a pulse of tracer is injected at time t=0. The injection is uniformly distributed in a 50 m thick
patch with an area 1.4×107 km2 located in the high latitude Northern Atlantic as indicated by
black region in the inset map. The dashed curve corresponds to the Dirichlet boundary con-
dition in which the tracer concentration is prescribed to unity for t>0 in the same 50 m thick
patch used for the Neumann problem. At time t=0 the concentration of both tracers is zero
everywhere in the ocean.
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PRIMEAU, DELEERSNIJDER: TRACER EQUILIBRIUM 3

Our goal in the following sections is to further elucidate
the dependence of the equilibration time on the choice of
boundary condition. However, one of the main conclusions
from this article should already be evident – the relevant
boundary condition for studying the differences in equilibra-
tion time between the Atlantic and Pacific ocean in theδ18O
record is not the one used by WH08 in which the concentra-
tion is prescribed, but one in which the flux of tracer is pre-
scribed. As we will discuss later, a prescribed concentration
boundary condition can be used to extract relevant timescales
for tracers such as14C that enter the ocean through air-sea
exchange, but the prescribed concentration boundary condi-
tion must be applied over the entire air-sea interface and not
as was done in WH08 over a patch of limited area with no-
flux boundary conditions applying over the rest of the ocean.

To avoid the arbitrariness of the 90% threshold associ-
ated with thet90 timescale, we will use thee-folding de-
cay timescale of the most slowly decaying eigenmode of the
system. Ast → ∞, the most slowly decaying eigenmode
dominates the time evolution of the system because the other
eigenmodes eventually decay sufficiently to make a negligi-
ble contribution. The spatial pattern associated with the most
slowly decaying eigenmode together with the mode’s decay
rate provide a concise description of the regional differences
in the equilibration time. The plan for this paper is therefore
to compute the eigenmodes of a three-dimensional OGCM,
and explore the dependence of the characteristic equilibra-
tion time on the size of the patch in which the tracer is in-
troduced. Before presenting the results for the OGCM, we
first illustrate in the simplest possible terms the main dif-
ference for the equilibration time of a problem with a pre-
scribed flux (Neumann boundary condition) and a prescribed
concentration (Dirichlet boundary condition) using a simple
3-box model. The available analytical solution for the simple
3-box model will allow the interested reader to verify results
which we obtain numerically for the full OGCM.

2 A simple 3-box model example

To illustrate in the simplest possible terms how the time to
reach equilibrium depends critically on the choice between
a Dirichlet and Neumann boundary condition, we now con-
sider the evolution of a passive tracer in a simple 3-box
model. A detailed formulation of the governing equation for
the 3-box model shown in Fig. 2 is presented in Appendix
A. Expressed in matrix form, the governing equation is

dc

dt
+Ac = s, (1)

where,

A =




γ 0 −γ
0 γ −γ

−αǫγ (α− 1)ǫγ ǫγ



 , (2)

is the model’s flux-divergence operator (also known as the
transport operator), where the state vectorc = [c1 c2 c3]

′

α (1−α)

V 3 

V 1 V 2 

S 

ε

S S 

D 

D 

φ
1,3 

φ
2,3 

c  (t)1 c  (t)2

φ
a,1 

c  (t)3 

(a) (b) 

Fig. 2. (a) Geometry of the 3-box ocean model whereV1, V2 and
V3 are the box volumes,αS and(1 − α)S with 0 ≤ α ≤ 1 are
the areas of the interfaces separating box 1 from 3 and box 2 from
3 respectively, and whereS is the area of the ocean-atmosphere
interface. (b) Diagram showing the notation used for the tracer
concentrationsc1, c2 and c3, for the fluxes between the boxes
φ1,3 = (c1 − C3)αvS, andφ2,3 = (c2 − c3)(1 − α)vS, and
for the flux from the atmosphere or runoff,φa,1.

represents the tracer concentration in each box and where
s = [φa,1 0 0]′ is a source term. The prime denotes vector
transpose. The parameters inA that are not defined in the
caption for Fig. 2 are the inverse timescaleγ ≡ vS/(V1 +
V2), and the small parameterǫ ≡ (V1 + V2)/V3.

2.1 Neumann boundary condition

We first consider the case in which a pulse of tracer is in-
jected instantaneously into box “1” at timet = 0 prior to
which the tracer concentration was zero everywhere. The to-
tal amount of tracer injected is such that ast → ∞ and the
mixing of the tracer is complete, the equilibrium tracer distri-
bution is one in whichc1 = c2 = c3 = 1. The total amount
of tracer injected at timet = 0 must therefore beV1+V2+V3,
and the concentration in box 1 at timet = 0+ is

c1(0
+) =

V1 + V2 + V3

V1
=

1 + ǫ

αǫ
. (3)

For t > 0 there is no source or sink of tracer into the ocean
so that the total amount of tracer is conserved. The time evo-
lution of the tracer can then be obtained by propagating the
initial tracer distribution forward in time with the exponential
of the matrixA [e.g.Hirsch and Smale, 1974]:

c = e−tA
co, (4)

whereco ≡ c(t = 0+) = [(1 + ǫ)/(αǫ), 0, 0]′ is the tracer
distribution immediately after injection when all the tracer is
concentrated in box “1”. Expanding the exponential in terms
of the eigenmodes ofA, we obtain the solution




c1(t)
c2(t)
c3(t)



 =




1
1
1



+




(1+ǫ)(1−α)

ǫα
− 1+ǫ

ǫ
0



 e−γt+




1
ǫ
1
ǫ
−1



 e−(1+ǫ)γt.

(5)

Fig. 2. (a) Geometry of the 3-box ocean model where V1, V2 and V3 are the box volumes, αS
and (1−α)S with 0≤α≤1 are the areas of the interfaces separating box 1 from 3 and box 2
from 3 respectively, and where S is the area of the ocean-atmosphere interface. (b) Diagram
showing the notation used for the tracer concentrations c1, c2 and c3, for the fluxes between
the boxes φ1,3=(c1−C3)αvS, and φ2,3=(c2−c3)(1−α)vS, and for the flux from the atmosphere
or runoff, φa,1.
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Fig. 3. Plot of τ0 = 1/λ0 (blue squares) andτ1 = ℜ{1/λ1}
(red diamonds) the e-folding timescale in units of years of two most
slowly decaying eigenmode of the Dirichlet-problem versusthe re-
ciprocal of the area,A of the patch. The set of patches used for
this calculation is described in the text. AsA → 0, the equilibra-
tion time-scale given byτ0 approaches infinity. The red star corre-
sponds toeτ1 = ℜ{−1/λ1}, the most slowly decaying eigenmode
of the Neumann problem. It shows that in the limit where the area of
the patch goes to zero it is the decay rate of the second most slowly
decaying eigenmode of the Dirichlet-problem that approaches that
of the equilibration time-scale of the Neumann problem.

3.2 Neumann boundary condition: prescribed flux

We again present the problem formulation in discrete form.
The interested reader can refer to Appendix C for the contin-
uous formulation of the eigenvalue problem with Neumann
boundary conditions. The tracer transport problem in which
a flux of tracer is prescribed through a given surface patch
at timet = 0 can be written in terms of a matrix system of
differential equations of the form

d

dt
c +Ac = ρsδ(t), (20)

subject to the initial condition

c = 0, at t = 0, (21)

wheres is a vector with ones in the elements corresponding
to grid boxes inside the patch and zeros in the elements cor-
responding to grid boxes outside the patch and whereδ(t) is
the Dirac-delta function. The dimensionless scalarρ ensures
that enough tracer is injected in the patch at timet = 0 so
that the asymptotic equilibrium tracer concentration is equal
to unity everywhere. The parameterρ is therefore equal the
ratio of the total volume of the ocean to the volume inside
the patch. Equation (20) can be reduced to a homogeneous
initial value problem (i.e. with no source term on the right

hand side) by integrating the equation fromt = −ǫ to t = ǫ
and lettingǫ→ 0, to obtain

d

dt
c +Ac = 0,

c(t = 0) = ρs,
(22)

in which the effect of the pulse of tracer injected into the
ocean at timet = 0 is encoded in the problem’s initial con-
dition.

The eigenmode problem for the discretized model with
Neumann boundary condition consists of looking for so-
lutions of the homogeneous equation that are of the form
c(t) = ve−λt. Substituting the modal form into the homo-
geneous equation leads to the following matrix eigenvector
problem,

Avn = λnvn, for n = 0, · · · , N − 1, (23)

whereN = 63090 is the number of grid boxes in the model.
The eigenvectors,vn, capture the spatial pattern of the eigen-
modes and the eigenvalues,λn are such that the reciprocal
of their real parts give thee-folding decay rate of the cor-
responding eigenmodes. In the following we will assume
that the eigenmodes are ordered in terms of their real part
ℜ{λn} ≡ τ−1

n such thatτ0 > τ1 ≥ τ2 ≥ · · · ≥ τN .

3.2.1 Approach to equilibrium for the Neumann problem

The solution to Eq. (20) is obtained by projecting the initial
condition,c = ρs onto the eigenmodes ofA,

c(t) = eAt(ρs) =

N−1∑

n=0

anvne
−λnt

= 1 +
N−1∑

n=1

anvne
(−1/τn−iωn)t,

(24)

whereN is again the total number of grid boxes and hence
eigenmodes, and where the leading vector of ones in the sec-
ond line corresponds to the constant eigenfunction with the
zero eigenvalue. All the eigenmodes withn ≥ 1 have a
positiveτn and therefore decay exponentially with time. As
t → ∞ only the constant eigenmode with a zero eigenvalue
survives to produce the asymptotic equilibrium state. In gen-
eral, the approach to the asymptotic tracer field ast → ∞ is
dominated byv1, because the other eigenmodes decay more
quickly. In the unlikely situation where the initial tracerdis-
tribution does not project ontov1, the asymptotic tracer field
will be dominated byv2e

−λ2t, the second most slowly de-
caying eigenmode and the approach to equilibrium will be
even faster.

To compute the slowly decaying part of the eigen-
spectrum ofA we used Arpack [Lehoucq and Sorensen,
1996] as implemented in Matlab’s ’eigs’ function. As re-
quired by tracer conservation,A has a constant eigenvector

Fig. 3. Plot of τ0=1/λ0 (blue squares) and τ1=<{1/λ1} (red diamonds) the e-folding timescale
in units of years of two most slowly decaying eigenmode of the Dirichlet-problem versus the
reciprocal of the area, A of the patch. The set of patches used for this calculation is described
in the text. As A→0, the equilibration time-scale given by τ0 approaches infinity. The red star
corresponds to τ̃1=<{−1/λ1}, the most slowly decaying eigenmode of the Neumann problem.
It shows that in the limit where the area of the patch goes to zero it is the decay rate of the
second most slowly decaying eigenmode of the Dirichlet-problem that approaches that of the
equilibration time-scale of the Neumann problem.
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Fig. 4. Amplitude and phase of the most slowly decaying eigen-
mode of the transport operator with a Neumann boundary condition.
Panel (a) corresponds to a depth of detph of 2105 m and panel (b)
corresponds to a depth of 3185 m. The mode is over-damped with
a an e-folding decay rate of 628 years and a period of 5190 years.

with a zero eigenvalue,λ0 = 0. The most slowly decaying
eigenmode for our model has eigenvalue,λ1 ≡ 1/τ1 − iω1,
which corresponds to an over damped mode with ane-
folding decay time ofτ1 = 629 years and a period of
Tn = 2π/ω1 = 5190 years. The next most slowly decay-
ing eigenmode has ane-folding decay timescale ofτ2 = 365
years. Figure 4 shows a contour plot of the phase and am-
plitude of the corresponding eigenfunction,v1 in the deep
ocean.

For our OGCM, the approach to the uniform tracer distri-
bution is governed by the over-damped eigenmodev1e

−λ1t.
The timescale for the approach to this exponentially decaying
regime is in turn determined by the relative decay rate of the
next most slowly decaying eigenmode, through the formula
τr ∼ τ1τ2/(τ1 − τ2), which for our model isτr = 870 years.

Assuming that the initial projection onv1 is not zero, as is
the case for our model, the relative disequilibrium between
points at two different locations in the deep ocean, in grid
boxesi andj say, can be obtained for timest≫ τr from the
spatial structure ofv1 alone. If we consider two points in the

ocean at grid boxesi andj then the asymptotic disequilib-
rium of these two points is

||1 − ci(t)|| ∼ ||a1v1i||e
−t/τ1 ,

||1 − cj(t)|| ∼ ||a1v1j ||e
−t/τ1 ,

(25)

where v1i and v1j are thei-th andj-th elements ofv1. The
time lag ∆t(i, j) between the equilibration time of boxes
with indicesi andj can be estimated from the requirement
that

||v1i||e
−

t
τ1 = ||v1j ||e

−
t+∆t(i,j)

τ1 , (26)

which leads to the following formula,

∆t(i, j) ≈ −τ1 log

(
||v1i||

||v1j ||

)
, (27)

provided neither v1i or v1j vanishes. At the few points where
either v1i or v1j vanishes, the next eigenmode in the ex-
pansion (which decays even more rapidly) would need to be
taken into account. For our model, the lag in the equilibra-
tion time between any two points at depths below 3100 m
is always less than 1200 years and much less on average.
These time lags are much smaller than those obtained from
the boundary condition use by WH08, i.e. Dirichlet bound-
ary condition on regional patches.
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Fig. 5. Response to a flux into the top layer of the model prescribed
as a Dirac-delta function pulse. The solid blue curve is for apoint
at (39◦N 23.5◦W) in the Atlantic Ocean and the dashed red curve is
for a point at (13◦N, 120◦W) in the Pacific Ocean. Both points are
taken at a depthz = 3185 m.

Figure 5 contrasts the time evolving response at two points
in deep ocean to a Dirac-delta function pulse of tracer in the
surface ocean. One point is in the Atlantic and the other point
is in the Pacific. The tracer concentration crosses its equilib-
rium value before 2000 years at both sites and is pretty much
in equilibrium at about 3000 years. The Pacific lag with re-
spect to the Atlantic is generally less than 1000 years. Fig-
ure 6 shows the response at the same two points for the case

Fig. 4. Amplitude and phase of the most slowly decaying eigenmode of the transport operator
with a Neumann boundary condition. Panel (a) corresponds to a depth of detph of 2105 m and
panel (b) corresponds to a depth of 3185 m. The mode is over-damped with a an e-folding
decay rate of 628 years and a period of 5190 years.
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Fig. 4. Amplitude and phase of the most slowly decaying eigen-
mode of the transport operator with a Neumann boundary condition.
Panel (a) corresponds to a depth of detph of 2105 m and panel (b)
corresponds to a depth of 3185 m. The mode is over-damped with
a an e-folding decay rate of 628 years and a period of 5190 years.

with a zero eigenvalue,λ0 = 0. The most slowly decaying
eigenmode for our model has eigenvalue,λ1 ≡ 1/τ1 − iω1,
which corresponds to an over damped mode with ane-
folding decay time ofτ1 = 629 years and a period of
Tn = 2π/ω1 = 5190 years. The next most slowly decay-
ing eigenmode has ane-folding decay timescale ofτ2 = 365
years. Figure 4 shows a contour plot of the phase and am-
plitude of the corresponding eigenfunction,v1 in the deep
ocean.

For our OGCM, the approach to the uniform tracer distri-
bution is governed by the over-damped eigenmodev1e

−λ1t.
The timescale for the approach to this exponentially decaying
regime is in turn determined by the relative decay rate of the
next most slowly decaying eigenmode, through the formula
τr ∼ τ1τ2/(τ1 − τ2), which for our model isτr = 870 years.

Assuming that the initial projection onv1 is not zero, as is
the case for our model, the relative disequilibrium between
points at two different locations in the deep ocean, in grid
boxesi andj say, can be obtained for timest≫ τr from the
spatial structure ofv1 alone. If we consider two points in the

ocean at grid boxesi andj then the asymptotic disequilib-
rium of these two points is

||1 − ci(t)|| ∼ ||a1v1i||e
−t/τ1 ,

||1 − cj(t)|| ∼ ||a1v1j ||e
−t/τ1 ,

(25)

where v1i and v1j are thei-th andj-th elements ofv1. The
time lag ∆t(i, j) between the equilibration time of boxes
with indicesi andj can be estimated from the requirement
that

||v1i||e
−

t
τ1 = ||v1j ||e

−
t+∆t(i,j)

τ1 , (26)

which leads to the following formula,

∆t(i, j) ≈ −τ1 log

(
||v1i||

||v1j ||

)
, (27)

provided neither v1i or v1j vanishes. At the few points where
either v1i or v1j vanishes, the next eigenmode in the ex-
pansion (which decays even more rapidly) would need to be
taken into account. For our model, the lag in the equilibra-
tion time between any two points at depths below 3100 m
is always less than 1200 years and much less on average.
These time lags are much smaller than those obtained from
the boundary condition use by WH08, i.e. Dirichlet bound-
ary condition on regional patches.
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Fig. 5. Response to a flux into the top layer of the model prescribed
as a Dirac-delta function pulse. The solid blue curve is for apoint
at (39◦N 23.5◦W) in the Atlantic Ocean and the dashed red curve is
for a point at (13◦N, 120◦W) in the Pacific Ocean. Both points are
taken at a depthz = 3185 m.

Figure 5 contrasts the time evolving response at two points
in deep ocean to a Dirac-delta function pulse of tracer in the
surface ocean. One point is in the Atlantic and the other point
is in the Pacific. The tracer concentration crosses its equilib-
rium value before 2000 years at both sites and is pretty much
in equilibrium at about 3000 years. The Pacific lag with re-
spect to the Atlantic is generally less than 1000 years. Fig-
ure 6 shows the response at the same two points for the case

Fig. 5. Response to a flux into the top layer of the model prescribed as a Dirac-delta function
pulse. The solid blue curve is for a point at (39◦ N 23.5◦ W) in the Atlantic Ocean and the dashed
red curve is for a point at (13◦ N, 120◦ W) in the Pacific Ocean. Both points are taken at a depth
z=3185 m.
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r = (lat = 13.0, lon = 240.0 depth = 3185.0 (m))

r = (lat = 39.0, lon = 337.5 depth = 3185.0 (m))

Fig. 6. Response to a flux into the top layer of the model is
prescribed to evolve according to a Gaussian function centered at
t = 6000 yrs with a standard deviationσ = 2000 yrs. Fort < 0
the surface flux is zero. The solid blue curve is for a point at (39◦N
23.5◦W) in the Atlantic Ocean and the dashed red curve is for a
point at (13◦N, 120◦W) in the Pacific Ocean. Both points are taken
at a depthz = 3185 m.

where the injection of tracer is distributed in time according
to a Gaussian pulse with a standard deviation of 2000 years.
Distributing the tracer flux in time as opposed to injecting it
instantaneously using a Dirac-delta function has the effect of
reducing the overshoot past the asymptotic equilibrium value
and tends to further decrease the lag between the Pacific and
Atlantic responses.

4 Discussion

Tracer simulations that use a prescribed tracer concentration
as a surface boundary condition allow the tracer flux to be
determined as part of the solution. This has the effect of
making the flux dependent on the tracer concentration and
on the ocean circulation. However, for a tracer such asδ18O,
the flux of melt water into the ocean determines the initial
surface concentration ofδ18O and not the other way around.

The injection of a tracer by a process such as ice melt is
consistent with prescribing a flux over a limited region of
the surface ocean. Prescribing the concentration as is done
by WH08, implies that there is some instantaneous feed-
back mechanism that keeps the surfaceδ18O concentration
at some prescribed value as deeper waters with little or no
tracer signature are mixed into the surface layer. It is difficult
to imagine a mechanism that could achieve this. We expect
no such feedback from the runoff of ice-melt from rivers and
streams and while the atmosphere is a reservoir with a fast
mixing timescale it is a rather small reservoir and is therefore
not expected to have enough inertia to keep theδ18O content

of surface waters constant during the period over which the
ocean reaches equilibrium.

For a tracer such as14C that enters the ocean through air-
sea gas exchange a restoring boundary condition is appro-
priate. To the extent that the air-sea gas exchange is suffi-
ciently rapid, one might argue that a prescribed concentration
boundary condition can be used to provide timescales useful
for the interpretation of regional differences in tracer concen-
trations. However, for the specific case of14C the air-sea dis-
equilibrium is sufficiently large that it needs to be taken into
account [Campin et. al. 1999], in which case a flux boundary
condition applied directly to a well mixed atmospheric box
coupled to the ocean would be easier to interpret.

While the Neumann boundary condition in which the flux
of tracer is prescribed is the relevant one for understanding
the equilibration time of a tracer such asδ18O, the Dirich-
let boundary condition in which the concentration is speci-
fied is still extremely useful for understanding the concept
age in marine modeling [e.g. Delhez et al. 1999; Holzer
and Hall, 2000; Deleersnijder et al. 2002; Haine and Hall
2002]. As mentioned in the introduction, for the case of a
stationary circulation the solution to the Dirichlet boundary
condition can be interpreted as the cumulative distribution of
times since the fluid elements in the ocean interior were last
in contact with the surface patch. The time derivative of the
cumulative distribution is often referred to as an age distri-
bution and it gives important information about the distribu-
tion of times by which fluid elements are transported from
the surface ocean to a point in the interior of the ocean via
multiple pathways. However, in order for the age distribu-
tion to give specific information about the relative disequi-
librium of a given tracer in the interior of the ocean it must
be convolved with the time history of the surface concentra-
tion of the given tracer. Unless the concentration history of
the tracer at the surface is known, the age distribution cannot
be used to infer the relative disequilibrium of the tracer. This
point is made explicit from the integral equation relating the
Green function,G(r, t; Ω) for propagating a pulse of tracer
through a surface patchΩ at timet = 0 and the Green func-
tion G(r, t; r′, t′) for propagating a prescribed surface con-
centration at timet′ at pointr′ insideΩ,

G(r, t; Ω) =

∫ t

0

dt′
∫

Ω

d2
r
′G(r, t; r′, t′)G(r′, t′; Ω). (28)

(The formulation of the governing equations that defineG
andG can be found in Holzer and Hall, [2000]). Equation
(28) shows how an initial pulse of flux throughΩ at time
t = 0 is propagated usingG(r′, t′; Ω) from Ω back to a point
r
′ on Ω at some timet′ ≥ 0 and then fromr

′ to a pointr in
the interior at timet usingG(r, t; r′, t′). The appearance of
G(r′, t′; Ω) on the right hand side of equation (28) shows that
detailed information about the time evolution of the tracer
concentration withinΩ is needed to obtain the interior tracer
disequilibrium at timet. This information is not contained in
G, the Green function for the Dirichlet problem.

Fig. 6. Response to a flux into the top layer of the model is prescribed to evolve according to a
Gaussian function centered at t=6000 yrs with a standard deviation σ=2000 yrs. For t<0 the
surface flux is zero. The solid blue curve is for a point at (39◦ N 23.5◦ W) in the Atlantic Ocean
and the dashed red curve is for a point at (13◦ N, 120◦ W) in the Pacific Ocean. Both points are
taken at a depth z=3185 m.
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